Efficacy and mechanisms of four-week MBSR on psychological distress in lung cancer patients: a single-center, single-blind, longitudinal, randomized controlled trial

Xu Tian, Zhong-Li Liao, Li-Juan Yi, Ling Tang, Gui-Hua Chen, María F. Jiménez Herrera

PII: S2347-5625(22)00209-8
DOI: https://doi.org/10.1016/j.apjon.2022.100151
Reference: APJON 100151

To appear in: Asia-Pacific Journal of Oncology Nursing

Received Date: 14 July 2022
Revised Date: 13 September 2022
Accepted Date: 16 September 2022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 The Author(s). Published by Elsevier Inc. on behalf of Asian Oncology Nursing Society.
Author statements

Please insert the relevant text under the subheadings below. A completed form must be signed by all authors. Please note that we will accept hand-signed and electronic (typewritten) signatures. Manuscript title:

Corresponding author:

Article type:

Author Agreement Statement

We the undersigned declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us. We understand that the Corresponding Author is the sole contact for the Editorial process. He/she is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs.

Author contributions

Please insert here the contribution each author made to the manuscript outlining their individual contributions to the paper using the relevant CRediT roles: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original draft; Writing - review & editing. Authorship statements should be formatted with the names of authors first and CRediT role(s) following. More details and an example.

Sample CRediT author statement

Role of the funding source

Please disclose any funding sources and their role, if any, in the writing of the manuscript or the decision to submit it for publication. Examples of involvement include: data collection, analysis, or interpretation; trial design; patient recruitment; or any aspect pertinent to the study. Please also comment whether you have
been paid to write this article by a pharmaceutical company or other agency. The information provided here must match the role of the funding source statement in the manuscript. If you are the corresponding author, please state that authors were not precluded from accessing data in the study, and they accept responsibility to submit for publication.

Declaration of interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Patient consent (if applicable) - completion of this section is mandatory for any articles including case details, personal information, and/or images of patients or other individuals. Please sign below to confirm that all necessary consents required by applicable law from any relevant patient, research participant, and/or other individual whose information is included in the article have been obtained in writing. The signed consent form(s) should be retained by the corresponding author and NOT sent to Asia-Pacific Journal of Oncology Nursing.

I agree with: the plan to submit to Asia-Pacific Journal of Oncology Nursing; the contents of the manuscript; the statements on data access; to being listed as an author; and to the conflicts of interest statement as summarised.

Signed by all authors as follows:

Xu Tien liao zhongli Chen GH
The efficacy and mechanisms of four-week mindfulness-based stress reduction on psychological distress in lung cancer patients: a single-center, double-blind, longitudinal, randomized controlled trial

Running title: Four-week MBSR alleviates psychological distress

Xu Tian¹, **Zhong-Li Liao**², **Li-Juan Yi**¹, **Ling Tang**², **Gui-Hua Chen**³, **María F. Jiménez Herrera**¹

1. Nursing Department, Universitat Rvoira I Virgili, Tarragona, Spain.
2. Chongqing University Cancer Hospital, Chongqing, China.
3. Department of Nursing, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China

Xu Tian and Zhongli Liao contributed equally to this work as the joint first author.

Corresponding to:
Prof. Gui-Hua Chen, Department of Nursing, The Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Yuzhong District, Chongqing 400010, China. E-mail: **CMUSH_ChenGH@163.com.**
Dr. María F. Jiménez Herrera, Nursing Department, Universitat Rvoira I Virgili, 35 Avinguda Catalunya, Tarragona 43002, Spain. Tel: +34 977299426. E-mail: **maria.jimenez@urv.cat**
Original Article

Efficacy and mechanisms of four-week MBSR on psychological distress in lung cancer patients: a single-center, single-blind, longitudinal, randomized controlled trial

Xu Tiana1, Zhong-Li Liaob1, Li-Juan Yia, Ling Tangb, Gui-Hua Chenc*, María F. Jiménez Herreraa*

aNursing Department, Universitat Rvoira I Virgili, Tarragona, Spain; bChongqing University Cancer Hospital, Chongqing, China; cDepartment of Nursing, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China

1Xu Tian and Zhongli Liao contributed equally to this work as the joint first author.

*Corresponding authors: Gui-Hua Chen, MNS, RN. E-mail: CMUSH_ChenGH@163.com; María F. Jiménez Herrera, PhD, RN. E-mail: maria.jimenez@urv.cat

Received: July 14, 2022, Accepted: ****, Published: ****

Cite this article as: Tian X, Liao ZL, Yi LJ, Tang L, Chen GH, Jiménez Herrera MF. Efficacy and mechanisms of four-week MBSR on psychological distress in lung cancer patients: a single-center, single-blind, longitudinal, randomized controlled trial. Asia Pac J Oncol Nurs XXX;XXX:XX.

ABSTRACT

Objective: This study aimed to evaluate the efficacy of a four-week MBSR program on psychological distress in patients with lung cancer and elucidate its mechanisms.

Methods: This single-center, single-blinded, longitudinal, randomized controlled trial was conducted on 175 lung cancer patients randomly allocated to a four-week MBSR or a waiting-list group. The
efficacy and mechanisms of the four-week MBSR program were evaluated by outcome measures at pre-intervention (T0), the immediate post-intervention (T1), 1 month (T2), and 3 months (T3). We analyzed the collected data using the per-protocol set (PP) principle, independent sample t-test, repeated measure analysis of variance (ANOVA), and structural equation modeling.

Results: The four-week MBSR program significantly alleviated psychological distress ($F=15.05, P<0.001$), decreased perceived stigma ($F=8.260, P=0.005$), and improved social support ($F=16.465, P<0.001$), and enhanced mindfulness ($F=17.207, P<0.001$) compared with usual care at T1, T2, and T3. All variables significantly changed over time except for copying style ($P=0.250$). The changes in social support, mindfulness, and perceived stigma mediated the efficacy of the four-week MBSR program on psychological distress ($\beta=-0.292, P=0.005; \beta=-0.358, P=0.005$).

Conclusions: This study shows the benefits of the MBSR program for psychological distress, social support, mindfulness, and perceived stigma in lung cancer patients. Also, it elucidates the mechanisms by which the MBSR program alleviate psychological distress by improving social support, enhancing mindfulness, and decreasing perceived stigma. The findings provide insights into applying the MBSR program to reduce psychological distress among lung cancer patients.

Keywords: lung cancer, psychological distress, mindfulness, MBSR, structural equation modeling

Key messages:

1. The MBSR program alleviates the psychological distress of lung cancer patients.

2. The MBSR program showed promise in improving lung cancer patients’ social support, enhancing mindfulness, and reducing perceived stigma.

3. The MBSR program supports interventional efficacy on lung cancer patients’ psychological
distress by affecting social support, mindfulness, and perceived stigma.

Introduction

Lung cancer remains the first reason of cancer-related death worldwide, accounting for approximately 18% of all cancer deaths [1]. In China, according to the statistics published in 2022, lung cancer ranked first in incidence and cancer-related mortality, with new cases of 828,100 and cancer-related deaths of 657,000[2]. Cancer patients will suffer from various psychological problems except for various physical symptoms (e.g., fatigue and shortness of breath) due to cancer diagnosis and anti-cancer treatment, especially psychological distress[3, 4]. Psychological distress will exist throughout the cancer trajectory[5], having different prevalence across studies, cancers, and countries[6], with a range from 20% to 58%[7-10]. Compared with other cancers, lung cancer was associated with the highest psychological distress prevalence[11, 12], varying from 17.0% to 73.0%[13-15]. In addition, a recent meta-analysis reported a mean prevalence of 48.3% of psychological distress in Chinese lung cancer patients[16].

Distress refers to “a multifactorial and unpleasant emotional experience, involving changes in psychological, social, spiritual, and physical aspects,” according to the definition given out by the National Comprehensive Cancer Network (NCCN) guideline[17]. Patients and oncologists prefer the term “distress” because it is less stigmatizing; therefore, the NCCN guideline panel used “distress” rather than “psychological distress”[18]. However, both terms are used interchangeably in the literature. Clinically significant psychological distress is associated with a range of adverse consequences[17], such as interruption of anticancer treatment[19-21], prolonged hospital stay[22], higher suicidal risk[23], poor quality of life[14, 24], and higher risk of mortality[25, 26]. Moreover, a previous study also evidenced that psychological distress can accelerate the growth of tumor cells[27]. Therefore,
regular and timely screening of psychological distress among cancer patients is critical because it has been recognized as the sixth vital sign[17, 28]. Indeed, it is critical to alleviate it after early and precise detection of psychological distress.

Currently, psychological interventions have been demonstrated efficacy in improving the psychological well-being of cancer patients[29-31]. Among the available psychological interventions, mindfulness-based stress reduction (MBSR), initially developed by Kabat-Zinn et al.[32], has been widely applied in cancer settings[31, 33] and might also the best psychological intervention to relieve cancer-related fatigue[34]. Based on previously published evidence[35-37], the practice of mindfulness can guide participants purposefully pay attention to the present moment and nonjudgmentally monitor the unfolding of experiences moment by moment, thus having profound benefit via the mind-body connection. The standard MBSR program comprises an 8-week psycho-educational course and four meditative techniques, including sitting meditation, body scan, gentle Hatha yoga, and walking meditation[32, 36, 38]. Studies have demonstrated the effectiveness and safety of MBSR program on psychosocial well-being and QoL[31, 33, 39, 40]. Currently, several studies have initially investigated the role of MBSR program in patients diagnosed with lung diseases, such as lung cancer [41, 42] and interstitial lung diseases[43, 44]. Furthermore, our meta-analysis further demonstrated the positive impact of the MBSR program on psychological states in lung cancer patients[45]. However, a definitive conclusion regarding the efficacy of the MBSR program for psychological distress has not obtained and should be further investigated in future studies with larger sample sizes.

Although a previous study attempted to explore the efficacy of MBSR program on psychological distress from three perspectives, including mindfulness skills, self-compassion, and rumination[42],
the exact psychosocial mechanisms by which MBSR program alleviates psychological distress remain unclear. Previous studies have revealed that several psychosocial factors in cancer patients are associated with psychological distress, such as social support[46], perceived stigma[47], perceived stress[48], intrusive thoughts[49], symptom burden[49], type D personality[49], coping style[50], self-esteem[51], mindfulness[52, 53], and illness perception[54, 55]. In addition, our previous studies explicitly investigated the roles of social support, perceived stigma, perceived stress, coping styles, self-esteem, mindfulness, and illness perception in the development of psychological distress in lung cancer patients[15, 56-58]. However, it remains unclear which pathways may mediate the interventional effects of the MBSR program on psychological distress in lung cancer patients.

Therefore, based on currently available evidence, we hypothesized that (a) a four-week MBSR program could alleviate psychological distress in lung cancer patients, and (b) by affecting social support, coping style, self-esteem, mindfulness, perceived stress, perceived stigma, and illness perception.

<H1>Methods

<H2>Study design

The present study was a single-center, single-blinded, longitudinal, randomized, controlled, parallel trial, including a four-week MBSR program group and a waiting-list group. We recruited eligible participants from a hospital in southwest China between 1 January and 30 September 2021.

<H2>Data collection

We designed a face-to-face questionnaire survey to collect data, administered by a trained research
nurse at three time points (depicted in Figure 1): baseline (T0), the immediate post-intervention (T1), 1-month post-intervention (T2), and 3 months post-intervention (T3).

<H2>Sample size

We estimated the sample size using psychological distress as the main effect indicator for this study. According to our previous meta-analysis[45], the MBSR program was associated with an effect size of 0.418 which was estimated based on the pooled result of psychological distress. Therefore, we estimated a theoretical sample size of 75 cases to ensure a statistical power of 80.0%. After considering a 20% dropout rate, 90 patients were calculated and then randomized to the four-week MBSR or the waiting-list group. We used the G*Power software (version 3.1) to estimate the sample size.

<H2>Participant criteria

We selected potential participants according to the following inclusion criteria: (a) cytological or histological diagnosis of lung cancer; (b) age ≥18 years; (c) patients with proven clinically significant psychological distress or at high risk of suffering from psychological distress; (d) known their diagnosis and were willing to participate in this study; and (e) able to read, write, and speak Chinese.

Exclusion criteria included: (a) a concurrent diagnosis of other cancers or psychiatric disorders; (b) a history of suicide attempts; (c) participation in any other psychosocial interventions within 3 months before enrollment, (d) prior experience with mindfulness-based interventions (MBIs), and (e) physical or cognitive (<26 on the Mini-Mental State Examination [MMSE]) impairments hampering participation in the four-week MBSR program or completion of questionnaires. Dropout criteria included: (a) unable to complete the intervention; and (b) loss to follow-up.
<H2>Recruitment</H2>

The trained research nurses enrolled participants from the respiratory and medical oncology inpatient departments of a general hospital in southwest China at patient visits. Trained research nurses assessed their eligibility, introduced the purpose of the study, and explained research content to potential participants and ensured that participants voluntarily participated in this study.

<H2>Randomization, allocation concealment, and blinding</H2>

After signing a written informed consent, eligible participants formally participated in this study. We first conducted a baseline survey of all participants in this study. Then, we randomly assigned participants to a four-week MBSR or waiting-list group using random numbers generated by SPSS software version 22.0. An independent research nurse used sealed and opaque envelopes for assignments. We invited independent psychologists qualified in the MBSR program to conducted a four-week MBSR program for participants in the experimental group. Since all participants have been informed of the detailed processes of this study, it is not possible to blind participants. However, outcome assessments were blinded because independent staff analyzed all outcomes.

<H2>Interventions</H2>

<H3>Experimental group</H3>

Participants in the experimental group received both usual care and a four-week MBSR program. In this study, we selected a four-week MBSR program as an intervention according to our meta-analysis[45] because lung cancer patients usually have a relatively short median survival time and fast deterioration in physical health[59]. During this four-week MBSR program, all participants in the
experimental group practiced MBSR under the guidance and supervision of a psychologists qualified as mindfulness trainer. The details of this four-week program were as follows: 10-minute explanation and meditation in the first week, 10-minute walking meditation in the second week, 10-minute breathing meditation in the third week, and 20-minute experience sharing in the fourth week. Details of each session in this four-week MBSR programme are summarized in Table S1. Participants were supervised to daily practice at home by psychologists twice weekly using telephone or WeChat (a popular social media in China).

Waiting-list group

Participants in the waiting list group first received usual care, including dietary instruction, health education, rehabilitation excise, emotional counseling, and medication instruction. Following the conclusion of this study, these participants were invited to voluntarily receive a four-week MBSR program and were provided with videos and materials for the intervention.

Demographics

At baseline, we used a self-designed data collection sheet to collect the demographic and clinical characteristics, including demographic information (gender, age, education level, occupation, marital status, residence, medical insurance, yearly income, family history of lung cancer, and smoking history) and clinical characteristics (TNM tumor stage, metastases, comorbidities, and pain degree).

Outcome measures

Psychological distress

We used the distress thermometer (DT) to measure psychological distress on an 11-point thermometer.
scale from 0 to 10 in this study, and 0 and 10 indicate no distress and extreme distress, respectively[17]. The reliability and validity of DT across different settings have been extensively tested[60]. Previous empirical studies indicated a score of ≥ 4 effectively confirms clinically significant psychological distress[60, 61]. A score of 4 was also demonstrated as the cut-off value for defining clinically significant psychological distress in Chinese cancer populations[60]. Meanwhile, we used the predictive algorithm, which was previously developed by our team[62], to identify those patients at high risk of psychological distress. In this predictive algorithm, a score of ≥ 66 indicates that patients have a high risk of suffering from psychological distress. We selected lung cancer patients who scored ≥ 4 in DT or ≥ 66 in the predictive algorithm to participate in this study.

<H3>Social support

The 12-item Multidimensional Scale of Perceived Social Support (MSPSS) was used to measure social support from three aspects, including family, friends, and significant others, on a 7-point Likert scale (1 indicates very strongly disagree but 7 represents very strongly agree)[63]. A previous study tested the psychological properties of MSPSS and reported coefficient alpha values of subscales ranging from 0.81 to 0.98[63]. The Chinese version had a reliability of 0.90[64]. We used the Chinese version in this study, which had an overall Cronbach’s alpha coefficient of 0.818, 0.785, 0.835, and 0.701 at T0, T1, T2, and T3, respectively, to measure social support.

<H3>Coping style

The 20-items Medical Coping Modes Questionnaire (MCMQ) was used to evaluate the coping styles, including confrontation, avoidance, and giving up coping, on a linear 4-point Likert scale from 1 to 3[65]. Shen, et al.[66] validated the Chinese version of the MCMQ, reporting a Cronbach’s alpha
coefficient of more than 0.60 for three subscales. We used the Chinese version in this study, which had an overall Cronbach’s alpha of 0.561, 0.542, 0.753, and 0.537 at T0, T1, T2, and T3, respectively, to measure coping style.

<H3>Self-esteem

The 10-item Rosenberg Self-Esteem Scale (RSES) was developed to measure global self-esteem, having a Cronbach’s alpha of 0.88[67]. A higher score indicated a higher level of self-esteem[67]. The Chinese version of the RSES has been validated by [68] and has been extensively used in China[69-71]. We used the Chinese version in this study, which had an overall Cronbach’s alpha coefficient of 0.809, 0.774, 0.750, and 0.775 at T0, T1, T2, and T3, respectively, to measure self-esteem.

<H3>Mindfulness

The 39-item Five Facet Mindfulness Questionnaire (FFMQ) was first developed by [72] to assess mindfulness from five facets on a 5-point Likert scale: observing, describing, acting with awareness, non-judging, and non-reacting[72]. The original FFMQ has been translated into Chinese[73] with good psychometric properties. In addition, a recent study continued to confirm the psychometric properties of the Chinese version in cancer patients using a Bayesian structural equation modeling approach[74]. We used the Chinese version in this study, which had an overall Cronbach’s alpha coefficient of 0.644, 0.704, 0.731, and 0.749 at T0, T1, T2, and T3, respectively, to measure mindfulness.

<H3>Perceived stress

The 10-item Perceived Stress Scale (PSS) was used to measure perceived stress on a linear 5-point Likert scale from 0 to 4[75]. A higher score represents a greater stress level. The 10-item Chinese
version has been validated and got a Cronbach’s alpha of 0.619[76]. We used the Chinese version in this study, which had an overall Cronbach’s alpha coefficient of 0.614, 0.608, 0.699, and 0.682 at T0, T1, T2, and T3, respectively, to measure perceived stress.

<H3>Perceived stigma</H3>

The 31-item Cataldo lung cancer stigma scale (CLCSS) was used to measure perceived stigma, categorized into stigma and shame, social isolation, discrimination, and smoking, on a linear 0- to 4-point[77]. A higher score indicates a higher level of perceived stigma. Yu et al.[78] translated the original version to Chinese and reported an overall Cronbach alpha of 0.932. In addition, 4 subscales had a Cronbach alpha of 0.799, 0.922, 0.863, and 0.803, respectively. This study used the Chinese version of the CLCSS, which had an overall Cronbach’s alpha coefficient of 0.863, 0.717, 0.709, and 0.730 at T0, T1, T2, and T3, respectively, to measure perceived stigma.

<H3>Illness perception</H3>

Weinman et al.[79] first developed the Brief Illness Perception Questionnaire (B-IPQ) to measure illness’s emotional and cognitive representations on a continuous linear 0 to 10 point. A higher score represents a more negative illness perception. Broadbent et al.[80] have shown a good test-retest reliability and predictive and discriminant validity of the B-IPQ. Xue et al.[81] translated the original version to Chinese, and it has been widely used in China[82, 83]. We used the Chinese version in this study, which had an overall Cronbach’s alpha coefficient of 0.657, 0.676, 0.643, and 0.630 at T0, T1, T2, and T3, respectively, to measure illness perception.

<H2>Statistical analysis</H2>
We used descriptive statistics to present participants’ demographics. The Kolmogorov-Smirnov tests showed that, in addition to age and risk scores in the prediction algorithm, the distribution of scores for psychological distress, social support, coping style, self-esteem, mindfulness, perceived stress, perceived stigma, and illness perception was abnormal at most time points. However, we preferred to use mean ± standard deviation (SD) for all continuous variables because (a) parametric tests are more powerful than non-parametric tests, (b) the results of the Kolmogorov-Smirnov test are not necessarily true, especially for relatively large sample size[84], and (c) according to kurtosis and skewness values, our data followed a normal distribution[85]. Therefore, we used the Chi-square test and independent-sample t-test to compare the variables between the two groups. However, repeated measure analysis of variance (ANOVA) was used to analyze changes or differences of variables between the groups (experimental vs. waiting-list groups), within-group (time), and interaction (group*time) effects.

Furthermore, we used structural equation modeling to elucidate the mediating role of significant variables that showed significant differences in the efficacy of a four-week MBSR program on psychological distress between the two groups after intervention. We first defined the interventions used in the experimental and waiting-list groups as dummy variables using 1 (experimental group) and 0 (waiting-list group), respectively. In addition, we adjusted all variables obtained from post-intervention using the baseline value[86].

We employed IBM Statistical Package for Social Sciences (SPSS) version 22.0 and Amos version 21.0 for statistical analysis.

<H2>Ethical consideration

This study strictly followed the statement of the Declaration of Helsinki. The ethical institutional board
of the hospital approved this trial (approval number: CZLS2021183-A), and we also registered the study protocol at the Chinese Clinical Trials Registry (Approval identifier: ChiCTR2100041899). Before participating in this study, all eligible participants signed informed consent and were freely allowed to withdraw from this study.

RESULTS

Recruitment

As depicted in the CONSORT flow chart (see Figure 1), 299 lung cancer patients were eligible for evaluation, but 190 patients who were eligible agreed to participate in this study. Of the 190 patients, 95 were randomly assigned to the experimental or waiting-list groups. However, 12 and 3 patients received no interventions in the experimental and waiting-list groups. One hundred seventy-five patients completed the study and underwent T1 and T2 assessments; however, at the T3 assessment, 5 and 3 patients were missed from the experimental and waiting-list groups, respectively. There was no statistically significant difference in the lost participants between the two groups at T3 (P=0.480).

Participants’ characteristics

The mean age of the participants in the experimental and waiting-list groups was 58.98 (SD=9.72) and 59.90 (SD=8.72), respectively, without significant difference (P=0.507). Of the 175 patients analyzed, most patients were male (61.7%) and lived in the urban areas (58.9%). Most patients were married (97.1%) and had low education (85.7% with a middle-high school education or less). Most of the patients paid medical costs using resident basic health insurance (97.7%) and had no family history of lung cancer (96.0%). Still, most patients were pain free (68.0%), had no comorbidity (76.6%), and were at stage III or IV. There remaining demographic and clinical data of the two groups were no
significantly different (P>0.05), as presented in Table 1.

<H2>The effect of the intervention on outcomes

The scores of seven variables between the two groups were not significantly different (P>0.05) at the baseline except for the score in the mindfulness, which was significantly higher in patients in the waiting-list group than patients in the four-week MBSR program group (t=4.746, P<0.001). After the intervention, as shown in Figures 2 and 3, apart from the coping style (F=1.386, P=0.250), the remaining variables changed significantly over time (P<0.05). As presented in Table 2, the four-week MBSR program significantly alleviated psychological distress (F=15.051, P<0.001), improved social support (F=16.465, P<0.001), enhanced mindfulness (F=17.207, P<0.001), and reduced perceived stigma (F=8.260, P=0.005) at immediate post-intervention, 1-month postintervention, and 3 months post-intervention. In addition, the difference in interventional effects between the two groups was also statistically significant over time (P<0.05).

<H2>Results of the mediating analysis

We only included three variables in the mediation analysis, including social support, mindfulness, and perceived stigma, according to pre-designed criteria. After structural equation modeling and appropriate adjustment of the pathways between variables according to the modification index and empirical evidence, the model fitted our data better (χ²/df=3.451, CFI=0.893, TLI=0.855, RMSEA=0.122 [95% CI: 0.108-0.136]).

Overall, the effects of the four-week MBSR program on psychological distress at T1, T2, and T3 was -0.274, -0.292, and -0.358, respectively. At the immediate post-intervention (T1), the four-week MBSR program alleviated psychological distress directly (β=-0.274, P=0.005), not mediated by other
variables. The effect of the four-week MBSR program on mindfulness at T1 and T2 continued to help alleviate psychological distress at T2 (β=-0.049). The effects of the four-week MBSR program on social support and mindfulness at T1 and T2 also continued to alleviate psychological distress at T3 by reducing perceived stigma at T2 and T3 (β=-0.039). The effect of the four-week MBSR program on perceived stigma at T1, T2, and T3 also influenced psychological distress at T3 (β=-0.081). Moreover, there was a continuous effect between psychological distress from T1 to T3 (β=0.886 from T1 to T2, β=0.816 from T2 to T3), indicating that the four-week MBSR program had a persistent effect on psychological distress (β=-0.198). The results of mediation analysis are summarized in Table 3, and the mechanism pathways are depicted in Figure 4.

Discussion

In this study, we aimed to validate the interventional effects of a four-week MBSR program on psychological distress in lung cancer patients, and to further elucidate the psychosocial mechanisms by which the program alleviates psychological distress. Our findings suggest that the four-week MBSR program, as an effective psychological intervention, significantly alleviates the psychological distress. The four-week MBSR program also improved patients’ social support considerably, enhanced mindfulness, and reduced perceived stigma. Furthermore, the results of the structural equation modeling suggest that the four-week MBSR program can exert an interventional effect by directly targeting psychological distress. Meanwhile, the four-week MBSR program supports continuous interventional effects on psychological distress by indirectly affecting social support, mindfulness, and perceived stigma.

MBSR has been extensively used in cancer settings[31, 33]. Currently, many meta-analyses[30, 31,
40, 87, 88] have demonstrated the benefits of MBSR program in improving the psychological well-being of cancer patients. Furthermore, our recent meta-analysis confirmed that the MBSR program significantly diluted negative psychological states and enhanced positive psychological states. In this study, we further validated the beneficial role of the MBSR program in alleviating psychological distress in lung cancer patients. Although it remains not entirely unclear why and how the MBSR program improves psychological wellbeing, previous studies[35-37] suggest that the practice of mindfulness instructs participants to deliberately focus on the present moment and monitor the unfolding of experiences all the time without passing judgment. As a result, participants experience profound benefits through the mind-body connection. Thus, it is plausible that lung cancer patients experience significant alleviation in psychological distress, improvement in social support, enhancement in mindfulness, and reduction in perceived stigma following a four-week MBSR program. This study also showed that the MBSR program had a retained effect on psychological distress after ending the intervention through indirect effects of social support, mindfulness, and perceived stigma. Both mindfulness[89] and social support[90] are positive sources for coping with negative psychological states, and our previous studies have demonstrated the inverse association between mindfulness and social support and psychological distress[15, 56, 58]. In contrast, stigma, a negative emotional experience that includes isolation, rejection, degradation, and criticism due to undesirable conditions[77], has been demonstrated to be a predictor of psychological distress in lung cancer patients[47]. In general, psychosomatic balance plays a vital role in regulating the psychological wellbeing of cancer patients[91]. Therefore, patients would suffer from significant physical and psychological problems when specific events (e.g., cancer diagnosis) destroyed psychosomatic balance[87].
According to the Mindful Coping Model[92], we can easily explain why MBSR program can consistently affect psychological distress through social support, mindfulness, and perceived stigma. Specifically, the destructive effects of internal and external stressors (e.g., cancer diagnosis, anti-cancer treatment, and symptom burden) can cause psychological distress in patients; however, the implementation of an MBSR program can initiate psychological adjustment to trigger or enhance the protective effects of positive sources (improvement in social support, enhancement in mindfulness) and weaken the harmful effects of negative sources (reduction in perceived stigma)[93], and may then significantly dilute the destructive impacts of stressors (alleviation in psychological distress)[94].

<H2>Strengths and Limitations

Overall, our study obtained these valuable findings due to several strengths. First, we enrolled both patients with clinically significant psychological distress and those at high risk of psychological distress by applying both DT and the risk prediction algorithm we developed, which significantly expanded the applicability of our findings in clinical practice. Second, we estimated the theoretical sample size from our meta-analysis, which ensured the statistical power of our results. Third, we explored the intervention mechanisms of the four-week MBSR program by determining the role of significant variables after the intervention, which benefited more simply revealing the active ingredients of the four-week MBSR program. Fourth, all potential mediating variables included in the intervention mechanism analysis have been previously investigated for their role in the development of psychological distress, increasing the reliability of theoretical evidence. Finally, our study was also rated as high in methodological quality because it met the six Cochrane collaboration criteria for high-quality trials[95], except that blinding participants due to the nature of the psychological intervention.
We cannot deny the fact that our study has several limitations. First and foremost, we used self-reported instruments to collect data, which may affect the accuracy of the results. Therefore, more objective tools need to be developed to measure these variables. Second, we recruited potentially eligible participants from only one hospital in southwest China due to the limited time. Therefore, we unable to eliminate the adverse impact of selection bias and time constraints on our findings. As a result, adequately powered studies with more extended intervention and follow-up duration are warranted to demonstrate our findings. Third, we selected only those variables tested in our previous studies to explore possible mechanisms of the MBSR program on psychological distress. However, we did not consider those factors that we did not investigate previously. Therefore, more intervention mechanisms analysis is needed to fully reveal the nature of MBSR program in alleviating psychological distress in lung cancer patients. Fourth, we used a four-week MBSR program with abbreviated sessions instead of a standard eight-week MBSR program in this study, which may have underestimated the intervention effect of the MBSR program due to inadequate duration of intervention. Therefore, future studies should further balance the interventional effects and applicability of the MBSR program in lung cancer patients. More importantly, it is necessary to further investigate the interventional effects of the enhanced protocol with adequate sessions in future studies. Fifth, the mechanism model fitted our data relatively when we explored the intervention mechanism of the MBSR program to alleviate psychological distress, which limited the generalization of our results. Therefore, considering that limited participants were enrolled in our study, we suggest future studies with larger sample sizes to further elucidate the intervention mechanism of the MBSR program in alleviating psychological distress. Sixth, we chose brief versions of the scales to ensure the quality of the data collection process in this study; however, the average time for a patient to complete all scales was still up to 45 minutes.
Although no patients were excluded for failing to complete scales, we could not eliminate the psychological burden caused by the need to complete multiple scales. Finally, in this study, we did not consider the impacts of sleep, fatigue, and exercise on the psychological status of lung cancer patients. Therefore, we suggest future studies to address this limitation.

Conclusions

In summary, the present study validated the intervention effect of the MBSR program in alleviating psychological distress, and provided relatively robust and reliable evidence for clinical practitioners to integrate the MBSR program into usual care to improve psychological well-being of lung cancer patients. Meanwhile, this study also suggested the positive effects of MBSR program on social support, mindfulness, and perceived stigma, which provided a reference for the application of MBSR program to improve clinical outcomes. Furthermore, this study revealed the direct impact of the MBSR program on short-term psychological distress. Additionally, it indicated the continuous effect of the MBSR program on psychological distress through social support, mindfulness, and perceived stigma.

Acknowledgements

The authors would like to acknowledge the funding support of the Chongqing Natural Science Foundation, the Basic Science and Frontier Technology Research Project of Chongqing, and the Medical Research Project which was jointly approved by the Chongqing Science and Technology Bureau and Health Commission of Chongqing Municipal City, China. We also thank the lung cancer patients who participated in this study.

Authors’ contributions
Conceived and designed the analysis: Xu Tian, Gui-Hua Chen, María F. Jiménez Herrera

Collected the data: Xu Tian, Zhong-Li Liao, Ling Tang

Contributed data or analysis tools: Xu Tian, María F. Jiménez Herrera

Performed the analysis: Xu Tian, Zhong-Li Liao, Li-Juan Yi

Wrote the paper: Xu Tian, Zhong-Li Liao, Gui-Hua Chen, María F. Jiménez Herrera

Funding

This study was supported by the Chongqing Natural Science Foundation (project number: cstc2020jcyj-msxmX0212), the Basic Science and Frontier Technology Research Project of Chongqing (project number: cstc2048jcyjAX0775), and the Medical Research Project which was jointly approved by the Chongqing Science and Technology Bureau and Health Commission of Chongqing Municipal City (project number: 2022MSXM067).

Declaration of competing interest

None declared

Ethics statement

This study was approved by the Clinical Research Ethics Board of the Chongqing University Cancer Hospital (Approval No. CZLS2021183-A).

References

[21] Yee MK, Sereika SM, Bender CM, Brufsky AM, Connolly MC, Rosenzweig MQ. Symptom incidence, distress, cancer-related distress, and adherence to chemotherapy among African

[35] Kabat-Zinn J, Santorelli S. Mindfulness-Based Stress Reduction Professional Training-

Supportive Care in Cancer 2020;28(6):2735-43.

[87] Zhang Q, Zhao H, Zheng Y. Effectiveness of mindfulness-based stress reduction (MBSR) on

Tables

<table>
<thead>
<tr>
<th>Table 1: Demographic and clinical characteristics of the patients (N= 175)</th>
<th>Experimental (n=83)</th>
<th>Control (n=92)</th>
<th>t/χ²</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>52</td>
<td>56</td>
<td>0.059*</td>
<td>0.809</td>
</tr>
<tr>
<td>Female</td>
<td>31</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>58.98±9.72</td>
<td>59.90±8.72</td>
<td>0.664*</td>
<td>0.507</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td>3.086*</td>
<td>0.214</td>
</tr>
<tr>
<td>Primary school or below</td>
<td>15</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle and high school</td>
<td>57</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College and above</td>
<td>11</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
<td>6.726*</td>
<td>0.081</td>
</tr>
<tr>
<td>No work</td>
<td>42</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working</td>
<td>8</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retire</td>
<td>30</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td>1.128*</td>
<td>0.569</td>
</tr>
<tr>
<td>Single</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>80</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divorced/widowed</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residence</td>
<td></td>
<td></td>
<td>0.938*</td>
<td>0.333</td>
</tr>
<tr>
<td>City</td>
<td>52</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural areas</td>
<td>31</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical insurance</td>
<td></td>
<td></td>
<td>1.248*</td>
<td>0.264</td>
</tr>
<tr>
<td>Self-payment</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residents' basic health insurance</td>
<td>80</td>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yearly income, yuan</td>
<td></td>
<td></td>
<td>5.080*</td>
<td>0.166</td>
</tr>
<tr>
<td><20000</td>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20001-50000</td>
<td>25</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50001-100000</td>
<td>38</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>100000</td>
<td>17</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family history of LC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>81</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking history</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>39</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>44</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNM tumor stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>22</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>18</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>33</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>48</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>35</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>15</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>68</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain degree</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No pain</td>
<td>54</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>15</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>13</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LC, lung cancer; TNM, tumor-node-metastasis. *χ², #t.
Table 2: A comparison of the outcome variables between the two groups before and after the intervention.

<table>
<thead>
<tr>
<th>Variable</th>
<th>T0 (mean ± SD)</th>
<th>T1 (mean ± SD)</th>
<th>T2 (mean ± SD)</th>
<th>T3 (mean ± SD)</th>
<th>F1 (P)</th>
<th>F2 (P)</th>
<th>F3 (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental (n=83)</td>
<td>Control (n=92)</td>
<td>Experimental (n=92)</td>
<td>Control (n=92)</td>
<td>Experimental (n=78)</td>
<td>Control (n=89)</td>
<td></td>
</tr>
<tr>
<td>Risk score</td>
<td>67.84±24.42</td>
<td>66.39±29.90</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>P=0.727</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Psychological distress</td>
<td>2.70 ± 2.13</td>
<td>2.45 ± 2.21</td>
<td>1.16 ± 1.57</td>
<td>1.78 ± 1.74</td>
<td>2.27 ± 1.27</td>
<td>0.43 ± 1.08</td>
<td>2.26 ± 1.25</td>
</tr>
<tr>
<td></td>
<td>t=0.617</td>
<td>t=2.519</td>
<td>t=6.278</td>
<td>t=9.580</td>
<td>t=0.350</td>
<td>(P<0.001)</td>
<td>(P<0.001)</td>
</tr>
<tr>
<td>Social support</td>
<td>57.31±7.17</td>
<td>55.66±12.32</td>
<td>58.80±9.38</td>
<td>57.73±9.50</td>
<td>65.30±6.42</td>
<td>58.81±9.11</td>
<td>33.911</td>
</tr>
<tr>
<td></td>
<td>P=0.537</td>
<td>P=0.012</td>
<td>P<0.001</td>
<td>P<0.001</td>
<td>P=0.001</td>
<td>P<0.001</td>
<td>P=0.001</td>
</tr>
<tr>
<td>Coping style</td>
<td>50.77±4.89</td>
<td>49.54±4.50</td>
<td>50.48±4.93</td>
<td>50.02±5.23</td>
<td>49.56±5.25</td>
<td>51.60±4.15</td>
<td>1.386</td>
</tr>
<tr>
<td></td>
<td>P=0.091</td>
<td>P=0.137</td>
<td>P=0.023</td>
<td>P=2.372</td>
<td>P=0.018</td>
<td>P=0.018</td>
<td>4.995</td>
</tr>
<tr>
<td>Self-esteem</td>
<td>27.72±4.04</td>
<td>28.17±5.00</td>
<td>27.67±4.00</td>
<td>27.44±3.91</td>
<td>28.30±4.70</td>
<td>27.14±4.19</td>
<td>4.894</td>
</tr>
<tr>
<td></td>
<td>P=0.451</td>
<td>P=0.003</td>
<td>P=0.006</td>
<td>P=2.419</td>
<td>P=0.018</td>
<td>P=0.018</td>
<td>2.425</td>
</tr>
<tr>
<td>Mindfulness</td>
<td>104.57±10.87</td>
<td>111.97±9.03</td>
<td>110.88±7.71</td>
<td>113.30±10.05</td>
<td>110.59±6.98</td>
<td>110.31±6.60</td>
<td>43.216</td>
</tr>
<tr>
<td></td>
<td>P<0.001</td>
<td>P=0.001</td>
<td>P=0.001</td>
<td>P=6.568</td>
<td>P=0.001</td>
<td>P<0.001</td>
<td>17.207</td>
</tr>
<tr>
<td>Perceived stress</td>
<td>20.95±4.64</td>
<td>20.48±4.65</td>
<td>18.35±3.86</td>
<td>19.97±2.95</td>
<td>19.23±3.62</td>
<td>19.55±3.06</td>
<td>17.49±3.61</td>
</tr>
<tr>
<td></td>
<td>P=0.001</td>
<td>P=0.001</td>
<td>P<0.001</td>
<td>P=0.001</td>
<td>P=0.001</td>
<td>P<0.001</td>
<td>3.755</td>
</tr>
<tr>
<td>Perceived stigma</td>
<td>75.83±15.14</td>
<td>75.22±16.06</td>
<td>63.57±8.27</td>
<td>67.79±8.87</td>
<td>62.55±7.51</td>
<td>59.50±7.70</td>
<td>68.58±9.10</td>
</tr>
<tr>
<td></td>
<td>P=0.571</td>
<td>P<0.001</td>
<td>P=0.001</td>
<td>P<0.001</td>
<td>P=6.995</td>
<td>P<0.001</td>
<td>8.260</td>
</tr>
<tr>
<td>Illness perception</td>
<td>48.19±7.81</td>
<td>46.98±4.63</td>
<td>43.20±7.00</td>
<td>45.00±7.69</td>
<td>43.00±7.49</td>
<td>45.62±12.17</td>
<td>42.21±7.20</td>
</tr>
<tr>
<td></td>
<td>P=0.782</td>
<td>P=1.571</td>
<td>P=1.080</td>
<td>P=1.539</td>
<td>15.240</td>
<td>2.365</td>
<td>4.760</td>
</tr>
</tbody>
</table>

Note: t-tests were used for comparison.
Table 3: Path coefficient of variables in intervention mechanism analysis.

<table>
<thead>
<tr>
<th>Pathway</th>
<th>β</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychological distress (T1)</td>
<td>-0.274</td>
<td>-0.461 to -0.144</td>
<td>0.005</td>
</tr>
<tr>
<td>Psychological distress (T2)</td>
<td>-0.292</td>
<td>-0.434 to -0.715</td>
<td>0.005</td>
</tr>
<tr>
<td>Psychological distress (T3)</td>
<td>-0.358</td>
<td>-0.530 to -0.237</td>
<td>0.005</td>
</tr>
<tr>
<td>Direct effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychological distress (T1)</td>
<td>-0.274</td>
<td>-0.461 to -0.144</td>
<td>0.005</td>
</tr>
<tr>
<td>Indirect effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychological distress (T2)</td>
<td>-0.292</td>
<td>-0.434 to -0.175</td>
<td>0.005</td>
</tr>
<tr>
<td>Intervention \rightarrow Psychological distress (T1) \rightarrow Psychological distress (T2)</td>
<td>-0.274*0.886 = -0.243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention \rightarrow Mindfulness (T1) \rightarrow Mindfulness (T2) \rightarrow Psychological distress (T2)</td>
<td>-0.1410.4150.844 = -0.049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychological distress (T3)</td>
<td>-0.358</td>
<td>-0.501 to -0.236</td>
<td>0.005</td>
</tr>
<tr>
<td>Intervention \rightarrow Psychological distress (T1) \rightarrow Psychological distress (T2) \rightarrow Psychological distress (T3)</td>
<td>-0.2740.8860.816 = -0.198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention \rightarrow Mindfulness (T1) \rightarrow Mindfulness (T2) \rightarrow Perceived stigma (T3) \rightarrow Psychological distress (T3)</td>
<td>-0.1290.4150.844*0.160 = -0.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention \rightarrow Mindfulness (T1) \rightarrow Mindfulness (T2) \rightarrow Psychological distress (T2) \rightarrow Psychological distress (T3)</td>
<td>-0.1410.4150.844*0.816 = -0.040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention \rightarrow Perceived stigma (T1) \rightarrow Perceived stigma (T2) \rightarrow Perceived stigma (T3) \rightarrow Psychological distress (T3)</td>
<td>-0.4030.7681.639*0.160 = -0.081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention \rightarrow Social support (T1) \rightarrow Social support (T2) \rightarrow Psychological distress (T3)</td>
<td>-0.1320.2640.827* = -0.029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention \rightarrow Social support (T1) \rightarrow Social support (T2) \rightarrow Perceived stigma (T2) \rightarrow Perceived stigma (T3) \rightarrow Psychological distress (T3)</td>
<td>-0.0520.2640.8271.6390.160 = -0.003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T0, baseline; T1, the immediate post intervention; T2, 1-month post-intervention; T3, 3 months post-intervention; β, standardized regression coefficients; CI, confidence interval; SD, standard deviation.
Enrollment

Assessed for eligibility (n = 299)

Excluded (n = 109)
 > Past participation of psychological intervention (n = 32)
 > Past participation of MBSR (n = 17)
 > Not meeting inclusion criteria (n = 34)
 > Declined to participate (n = 26)

Randomized (n= 190)

Allocation

Allocated to intervention (n = 95)
 > Received modified MBSR program (n = 83)
 > Did not receive allocated intervention due to burdened by treatment (n = 12)

Allocated to intervention (n = 95)
 > Received usual care (n = 92)
 > Did not receive allocated intervention due to burdened by treatment (n = 3)

Follow-Up

Immediate post-intervention assessment (n= 83)

1-month post-intervention assessment (n= 83)

3 months post-intervention assessment (n= 78)
 > Excluded from analysis due to died (n= 1)
 > No response (n= 4)

Immediate post-intervention assessment (n= 92)

1-month post-intervention assessment (n= 92)

3 months post-intervention assessment (n= 89)
 > No response (n = 3)

Analysis

78 patients included for analysis

89 patients included for analysis